Acceleration of Photocatalytic Antibacterial Action of TiO$_2$ by Halide Ions against Oral Microorganism

Kinji ONODA*, Yasuyuki OHNISHI†, Hiromi SHUTO, Yoshinori NAKAGAWA, Toshio MORIOKA‡ and Ikuichiro IZUMI†

Received November 8, 1995; Accepted February 19, 1996

1 INTRODUCTION

The photocatalytic activity of semiconductor powders has been investigated in such heterogeneous photocatalytic processes as hydrogen production from water$^{1)}$, decomposition of waste organic chemicals$^{2)}$, reduction of carbon dioxide$^{3)}$, various organic chemical syntheses$^{4)}$ and bactericidal action against some bacterial species$^{5)}$. We have communicated that powdered TiO$_2$ semiconductor has a photocatalytic effect on dental plaque and inhibits the viability of Streptococcus mutans, when reaction mixtures are irradiated with UV light$^{6),7)}$.

In the present paper, we describe the prominent acceleration of photocatalytic antibacterial action of powdered TiO$_2$ semiconductor by some halide ions against oral microorganism.

2 EXPERIMENTAL

Experiments were made with the fine-grain TiO$_2$ particle (P-25, Nippon Aerosil Co., LTD.) which is composed of 70% anatase and 30% rutile.

The stationary culture of S. mutans FA-1 was carried out in Brain Heart Infusion broth (BHI broth, Difco Lab.) at 37°C for 24 hours. The culture (5×10$^{-3}$cm3) was suspended in 100 cm3 of an aqueous solution of halides containing 0.1% TiO$_2$ by weight.

For the experiment of photocatalytic antibacterial effect, a glass vessel with bacterial suspension was set 5 cm apart from the light source and irradiated with a fluorescent lamp (FL20S-BL, Toshiba Corp.).

The viable cell count was measured by counting the colonies with a smear method using BHI agar.

3 RESULTS AND DISCUSSION

In the previous paper$^{6)}$, we have demonstrated the following conclusions, (1) photoexcited surface on powdered TiO$_2$ semiconductor contacted with a liquid phase has an excellent bactericidal capacity against S. mutans which is one of oral microorganisms, (2) the photocatalytic antibacterial action is more effective under near-ultraviolet irradiation than under visible one, (3) in this effect, anatase TiO$_2$ is superior to rutile TiO$_2$.

Here we report that the photocatalytic